深層学習の数理工学
Mathematical Engineering of Deep Learning
Chapman & Hall/CRC Data Science Series
Liquet, Benoit
Moka, Sarat
Nazarathy, Yoni
- 出版社:Chapman & Hall/crc
- 出版年月:2024年 10月
- ISBN:9781032288284
- 装丁:PAP
-
装丁について
- 言語:ENG
- 巻数・ページ数:402 p.
- 分類: コンピュータ数学・数値解析 , 人工知能
- DDC分類:006.31
- 内容紹介:
-
数学の言語を用いて、深層学習の完全で簡潔な概観を示す本書。機械学習と最適化アルゴリズムの充実した背景知識を提供し、深層学習のキーアイデアを通して進む。数学的な記法に慣れた読者にとっての理想的な一冊。This book provides a complete and concise overview of deep learning using the language of mathematics. The book provides a self-contained background on machine learning and optimization algorithms and progresses through the key ideas of deep learning. These ideas and architectures include deep neural networks, convolutional models, recurrent models, long/short-term memory, the attention mechanism, transformers, variational auto-encoders, diffusion models, generative adversarial networks, reinforcement learning, and graph neural networks.